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Attractors for the modifications of the
three-dimensional Navier—Stokes equations

By O. A. LADYZHENSKAYA

Steklov Mathematical Institute, Russian Academy of Sciences, Fontanka 27,
St Petersburg D-11, 191011 Russia

/ \\ \\

AL B

<

a The modifications of the three-dimensional Navier-Stokes equations, which I
< suggested earlier for the description of viscous fluid flows with large gradients of
> E velocities, are considered. It is proved that the first initial-boundary value problem
o) s for these equations in any bounded three-dimensional domain has a compact
= 5 minimal global B-attractor. Some properties of the attractor are established.

e

L O

=w 1. Introduction

=

L - The equations which we shall consider have the form

g0 4

I—

n_l- 8 3 a A y

838 Uit(x7t)+ pX vk(xJ)vz‘k(xJ)_ % aﬂlc(v(x’ t))=_qxi(x’t)+fi(x’t)> 1=1,2,3, (1)
o(é) k=1 k=1 k

= 1 = 3

EE divo(x,t) =0, z<Q <R3, (2)

where v(t): 2> R3 and ¢(¢): 2 R* are unknown functions; v,(z,t), 7 = 1,2,3, are
components of velocity vector v(x,t), 9(x,t) = (vy(x,t) (¢, k = 1,2,3), a tensor with
components v, (€, ) = vy, (€, 1) + Ve, (2, 1), vy, (2, 8) = 0y, (2, B), T(6(x,t)) = (Ti,(5(x, t))
(1, k = 1,2, 3) — a stress tensor which we shall describe later, f;(x,?) — the components
of the external forces f(x,¢) which are considered known.

For the Navier—Stokes equations

Tp(0) = vyvy,, vy = const. > 0.

For the modified Navier—Stokes equations that I suggested in the middle 1960s
([1], see also [2, 4]) T}, are continuous functions of the components of 4 satisfying the
following conditions:

(i) 1T(B)] < ex(L+18%)18], o > O, where [8] = (23 ,_; 0})%, ¢, € R = [0, 00);

(1) T} (B) vy = vy 0+ v, 9**2, where v, and v, are positive constants and ¢* = |4]?,
$rrm = 5|22,

—
iii) for arbitrary smooth solenoidal vector-fields " and »” which are equal on the
S y
S — boundary 0£2 the following inequality holds:
= 3
2= | )= TN 0= dez | S lemofede, v, = const. >0,
b=
E 8 It was proved ([3]) that a global unique solvability of the principal boundary value

problem for the system (1), (2) in any 2 < R® takes place if only x > 1. Tt is true also

for the two-dimensional problems if only x > 0 but we restrict ourselves with the
more interesting three-dimensional problems.
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174 0. A. Ladyzhenskaya
In this paper we shall study a special case of tensors 7}, :
Tiw(d) = p(@*) vy, 1, k=1,2,3, (31)

that was singled out in [3] (see also [2, 4]) as most interesting from physical point of
view. These tensors satisfy the Stokes axioms. They satisfy also all conditions (i)—(iii)
if function f: R* — R* is continuous and submits to inequalities:

Vot v, < (1) < vy+v, 7, v, = const. >0, (35)
and p(1) = 0. (35)

We shall suppose here that inequalities (3,) are fulfilled with 4 > 1 and (-) is an
absolutely continuous function with

ﬂ/eLoo,loc' (34)

For the sake of simplicity we restrict ourselves by the case of homogeneous boundary
condition
Vlog = 0. (41)

We study the dependence of the solutions » to the system (1), (2), (4,) on initial data
Vg =¢ (42)

and the behaviour of the solutions when ¢t -+ co. We denote solutions of (1), (2), (4,),
(4,) by the symbol v(t) or v(t, ) having in mind their dependence on xe 2.
Let us introduce the function

B(r)= | B(s)ds (35)
0
It submits to the inequalities
VoT+v (L +p) ' T < B(1) S vgr+v,(L+p) 71, w= 1 (3¢)
3
[T3e(0) = Tie(8")] (Wi — Vi) Z vo 2 (Vie—v5)% (32)
i, k=1
a 3 3 2 3
and a—ﬂ'k(”)gjz S =P Z g?}c"‘Qﬂ/(vz)( DI gzk) Zv, X & (3g)
Vi i, k=1 i, k=1 i, k=1

with arbitrary ¢, ¢, ¢ and &,
I also proposed ([1]) the system (1), (2) with

Te(B(, 1)) = [Vo"' Y f

*(x, 1) dx] v(x), v, >0. ()
Q

It is globally uniquely solvable under the conditions (4,) and (4,) ([2]), and the
problem (1), (2), (4,) with such 7}, has a compact minimal global B-attractor 9t ([5]).
This attractor has the same properties as the attractor M for the two-dimensional
Navier—Stokes equations proved in [6] and [7] (see also [8-10]). The methods of [5]
are closed to the methods of [6]. In particular, the existence of a compact M is based
on the compactness of the solution operators V,,¢ > 0, of the investigated problem.

But the method of proving the compactness of V,, ¢t > 0, suggested in [6] (in all
subsequent studies of attractors for the Navier—Stokes equations was used just this

Phil. Trans. R. Soc. Lond. A (1994)
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Attractors for the Navier—Stokes equations 175

method, see [11-13]) has some ‘weak sides’: (i) it is not applicable to the most part
of known approximations of the Navier-Stokes equations (including the Galerkin—
Faedo approximations calculated with the help of coordinate functions that do
not coincide with the eigenfunctions of the Stokes operator A), (ii) it is making use
the linearity or ‘almost’ linearity (as in (1) with 7} , from (5)) of the principal part
of the system under investigation and (iii) it requires the C2-smoothness of 0Q. At last
it is (ii) that makes the method of [6] just mentioned not applicable to the problem
considered in this paper.

We use for it a comparatively new method suggested by us in 1991 for the
Navier—Stokes equations ([14], see also [15, 16]). At the end of [16] the possibility to
apply the approach of [14] to the problem under discussion was noted.

2. ‘Energy’ estimates and absorbing balls

Let v(-,t, ¢) = v(t, §) be a solution of (1), (2), (4,), (4,) with (7},) satisfying (3,), k =
1,...,4, with > {. As a phase space we choose the Hilbert space H, which is the
closure in the norm of Hilbert space L,(2; R?) of the set

J*(Q) = {u || ueC*(Q),divu = 0,suppu is compact in Q}.

(In [4] we used for H, the symbol J(2) and have proved that the orthogonal
complement to J(£2) in L,(£2; R?) is the set of gradient’s fields.) The inner product and
the norm in L,(2; R?®) and in H, we shall denote by (-,*) and ||| correspondingly.
Let us introduce two other Hilbert spaces: the space H, which is the closure of the
set J*(Q) in the norm of Dirichlet integral

llly = llu,ll = ( T iy, (%) dx)i

Qi k
and the space H_,, which is dual to H, relative to H,. The norm in H_, is defined, as
usually, by

. 8)
|u]l—, = su .
-y = sup ]

The norm in Banach space L,,(2;R") is determined by the equality

1/m
il o = ( J |u<x>|mdx) ,
Q

1

2

— ()] = ( s u%(x)) .

where

(Recall that the norm [|u|, , we have designated for simplicity by [u]|.)
Besides, for we W2,(2; R?) the symbol 4 means the tensor (u;;), 4,k = 1,2,3, with
elements

and 4], 0 = Il |, o-
We shall investigate the set of all solutions of the problem (1), (2), (4,), (4,) with
Phil. Trans. R. Soc. Lond. A (1994)
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176 0. A. Ladyzhenskaya

a fixed fe H_, independent from ¢ and any ¢eH,. The estimates given below are
easily generalized for f depending on ¢.
The energy relation for our problem has the form

1 .
é& [l ||2+§fg Ti(B(x, 8) vy, t) dae = (f, v(t)). (6)

We get it if we multiply (1) by v,(x,t), take the sum over ¢ = 1,2, 3, integrate over
x€ 2 and transform the result by the integration by parts using the relations (2) and
(4,). We have used also the symmetry of (7},) and (v;;,).

Due to (3,) from (6) we can come to conclusions:

d p
3 12O+ 1B+ 1BONIEE o < 20, 0() < 21f 1l a0 (7

It is easy to see that
Jill2 =2 lu l® for any weH,. (8)

Therefore from (7) follows the inequality

d A
a2 1O+ ve o1+ 1801313 0 < v 11124 (9)

Integration of (9) gives the estimate

Fo(0) 24, f o,(r ||2dr+v1f||v )zt dr

< o)1 +vg" t1£112 = Dy (2, [0(0)])).  (10)
If Q is bounded domain then for any we H,
g ll® = Ay ul?, (11)

where —A, = —A,() is the first eigenvalue of the Stokes operator A = P, ,A under
the boundary condition (4,) (see [4], chapter II). In this case from (9) follows the
inequality

d
3 PO+ Ay o 1* < vt 11125 (12)

Its integration gives the estimate

lo@)1® < 10(0) 12 exp (—vo Ay 1) + [ 1121 (A v§) ' [L—exp (=, Ay 1)) (13)

From (13) we can conclude that any ball
Bp(Ho) = {u | ueHy, |lull <R} (14,)
with R> Ry = A7t | £, (14,)

is a B-absorbing set for our problem. It means that for any R, > 0 exists some
t,(R, R,) € R* such that all solutions v(t) of the problem (1), (2), (4,) with |»(0)|| < R,
will have |lo(t)|| <R for all ¢t > ¢ (R,R,). Besides, if |v(0)|| <R and R > R, then
o) < Rforallte R*.Thisiswhy theattractorMofourproblem (ifitexists)liesin the
ball By (H,) and to find M and investigate it we can choose for the phase space any
ball B ( o) With B > R,

Phil. Trans. R. Soc. Lond. A (1994)
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3. Estimates of some strong norms

To get farther estimates we multiply (1) by v,(z,t), sum over ¢ =1,2,3 and
integrate over x€ 2. Some elementary transformations of the result give the relation

llv,() 11>+ J B0, 1)) 0, 5*(2, 1) da = — (v, (£) vy (t), v35(1)) + (f, 0,(t

which can be written in the form

o (&)1 + 4dtf B(0*(x, 1)) Ao = — (v;,(8) V() v34(2)) + (f, v4(8)), (15)

where %(-) is determined in (3;).
We shall use now and later on the inequality

lully, o < vplul ™ llull®, «=3-3/p, pe(2,6], (16)

which holds for any ue Wi(2) and any 2 = R? (see [17]). Due to [16] we can derive
from [15] the inequalities

ot +4dtf% (@) 42 < 160 a1, 100N 5,0 100 Ly 0+ 11 0]

< Y 18 larau,@ 10O logO1* 1o, O vzl + 1f -1 oz O, (17)

where p =4(14+p) (1+2x¢)™ and o = 3-471 (1 +p)™!

Let us consider one more relation : the result of multiplication by v,, of the equation
(1), differentiated in t and the subsequent summation over ¢ = 1,2, 3 and integration
over €. It can be cast in the form

oT,
2dt || v(t)*+ QL‘—Z%E—I‘)‘) V(25 1) Vypee (0, £) da

— (V1 () Vg (8) 01 (8) v35e(2), v34(8))
= —1J Vs (@, 8) v, 8) v (2, 1) dac. (18)
2)a

Now we use (3;) for to estimate from below the left-hand side of (18) and Hélder,
Young’s inequalities and (16) for to majorize the right-hand side of (18). Namely

d

g 12O+ 200 g (DI < 160 1a10,0 120115,

S YR I8 a1, @ 1050 P07 vz ()]
Sa

vy [0z (D)1 + (1 —0) 3 =2 g 2 [16(0) 1345, v 11
with the same p and « as above in (17). From this relation follows the inequality

d -
3 1201 +v0(2 = a) loa()1* < ey 1 1215.% o (0)1® (19)
with ¢, = (1 —a) 3/ yge/a-e),

Phil. Trans. R. Soc. Lond. A (1994)
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178 0. A. Ladyzhenskaya

Our condition u > § is equivalent to the inequality (1 —a) ™ = 4(1+u)/(1+4u) <
2+4+2u. Due to this we can use the estimate (10) and get

(2+2m) (-t
fnv Iy dr < t(j () d) <o, [bO)).  (20)

Here p, = [(24+2u)(1 —o)—1](2+2p) (1 —a) ' = 0 and the majorant @,(-) as well
as subsequent majorants @,(-) are non- negatlve, continuous and non-decreasing
function of indicated arguments. We do not show the dependence of @, on the
constants entering in our conditions (3,) and on || f|_, (and on A; = A,(2) for the case
of bounded £2). All @, can be easily calculated explicitly.

If ||v,(0)|| < oo then the integration of (19) gives the estimate

o) ||2+f oy ()2 dr < Byt [o(O)]], [,(0)])- @1)

But we shall not use this estimate in the following consideration and instead of (21)
we shall estimate [v,(t)| and [%|v,,(7)||*dr for ¢ > ¢ > 0 using only the norm ||»(0)]|.

For this purpose we consider the sum of (17) multiplied by 4¢ and (19) multlphed
by 2. It can be written in the form

di(tf B0+ 00+ 2 10
¢ Q

(2= a) £ o (t)* < f B, 1)) da
Q

+ 475 150 242, 0 10O oo () [*E v (O [4e(2) )

4 [l oz (D) + ey 80 124572 o) 11P). (22)
Let us represent the second member of the right-hand side of (22) as the product of
the following three factors
3O = 147575 [5(0) 50,0 10O Lo 1N 150, 0 ¢ 21TV vt 00 (1)1
and majorize it using the Young’s inequality with the powers p, = 2,p, = 2/(1—a)
and p; =2/a (so 1/p,+1/p,+1/p; = 1):

J(O) < 8y g 181 24.9,, 100 P4 [l (8)]]>
+3(1—0) B0 11245, B( (vt 1) + 3o vy & v, (O1%. (23))

To the third member of the right-hand side of (22) we apply Cauchy inequality in the
form
A f -1 va D) < f5v0 2 vz (D1 + 4005 [ £112,. (23,)

Now we estimate the right-hand side of (22) using inequalities (23,), reduce the
similar terms and replace in the left-hand side of the resulting inequality the
coefficient vo(2 — o —ga—75) of 12 ||lv,,(¢)|* by 1 (it is possible because a < ). After that
we get the inequality

d 3
S 2,201 < | B 00
+c,(t) 15(2) (Ol 2120, 0 10O+ (¢ +3(1 —a)) [14( ||é/+(%;0?2 (* [loy(8)11%)
+4005 [ FI12) = eyt) +eq(t) (2 1o, (0) %) < cq(t) +eu(8) y(t), (24)

Phil. Trans. R. Soc. Lond. A (1994)
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where
—tj B(D(x, 1)) dx+18 ||lv, 1) ]2, (25,)
ey(t) = 8y vo* o(®)I*4~, (25,)
cs(t) = j,%’(ﬁ(x, t))dx+cz(t) ||6(t)||2+2ﬂ,9 [v,(8) 12+ 4005t [ £112,4, (254)

Q
and

¢y(t) = (e +3(1— o)) 18013527 (25,)

The inequality (10) gives majorants for

sup ¢,(t), ||03||1,(0,7) and ”64”1,(0,1)
tef0, 7]

(for Y7e R*) as the powers (142a) and (1 —a)~! do 1ot exceed thie number 2+ 2.
(For the case of bounded £ it is reasonable to use (18).) These majorants have the
form @(t, |v(0)|]). In virtue of this fact we can majorize y(t) and the integral [%- of the
left-hand side of (24) by a @(t, |[v(0)|) and recalling (3;) €0rhe to the estimates

Vo I8 12+ vy (L+) 1801555 o+ (1P < 71 Dy(t, [0(0)]]) (26)
and

f(zf o, (T2 490 72 [0,(7) [ dr < Byt [o(0) ). @)

4. Continuity of solution operators V,

As was said in the Introduction the problem (1), (2), (4,), (4,) is uniquely solvable
for all te R* for any ¢ € H, if T}, satisfy the conditions (i)—(iii) with 4 > . Its solutions
v(t, @) are elements of C(R*, H,) ([3]). Though in [3] we supposed that feL, ,(Q,),
VreR*, (where @, = Q2 x (0, 7)), the case with fe L,((0,7), H_,), VTeR*, and the more
so the case with f belonging to H_, arid independent on ¢ can be considered in the
similar way.

In the last case the solution operators

Vi g—>0(t, $) = V() (28)
have the semi-group property
th Vtg = ‘Vt,—Hz’ th: t2€ W

The estimate (10) guarantees the boundedness of opetators V;, te B*, in H,. Their
continuity is proved with the help of the same inequality as the uniqueness of
solutions. Namely, let us take two solutions v'(t) = v(t, ¢') and v”(¢) = v(t, ¢") of our
problem and consider their difference u(f) = v (t) v”(t). The latter 1s a solution of the
linear problem

2
oz,

divu =0, ulo=0, u(0)=¢ —¢". (29,)
Phil. Trans. R. Soc. Lond. A (1994)

gy (b) + 0 () Wy (8) + ug (8) 07 (8) — (T3 (7 () — T (87 (2))] = —Pep =123, (29


http://rsta.royalsocietypublishing.org/

r///"\ \\\
[\
N

A

a

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

) N

\

A
[

y 9

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

180 0. A. Ladyzhenskaya

Let us consider the sum over ¢ = 1,2, 3 of the inner products (29,) and v,(t). The result
can be written as

1 A7 /‘//
5@” ||2+§L[7}k(v(x>t)) T3 (8" (@, 8) w2, 1) A

_J [wg(@, &) wye (2, 8) w2, t) + up(, £) 0 (2, 1) uy(, )] da
o)

= —3(@ps(8), wye(t) uy(2)), (30)
where w(x,t) = 3(v'(x,t) +v"(x,t)). Using (3,), (16) and a Young’s inequality we can
come from (30) to the following conclusions

d A
3 1O +2vg (1 < NOO 24,0 D55,

S 160|242, 0 Vap 1) 247 (vg llug (8) 1) vy
< avg [lug (1) 4+ (1 — ) (v, Vo) O™ Ju(t || () 1345, (31)

where p and o are the same as in (17).
The reduction of similar members gives

d
3 14O+ o2 =a) lug(O]* < e5(0) u(®)]? (32)
with es(t) = (1—a) (72, vy ™)== (1) [14%, (33)
The estimate (10) and 1/(1—a) < 2+ 24 give a majorant @, for |lc,ll; o -
fcs(T) d7 < Dg(t, 1971, 1711 (34)
and therefore 0
lu@®)ll = V(@)= Vi(@")l < ll¢"— ¢"ll exp D (8, 16", 14”11)}- (35)

The estimate (35) ensures the continuity of V; in H, which is uniform on any
bounded set of H,,.

5. The finiteness of the number of determining modes

We can do one more interesting conclusion from (32) if  is bounded.
Suppose that the solutions v'(t) = v(t, ¢") and v”(t) = v(t, ¢"), t€ R* can be prolonged
for te R~ = (— 00, 0] as solutions of (1), (2), (4,) on all axis te R! and

Sl;p(llv(t, A, lo(t, ¢7)||) < oo.
teR!

(Later on, in §6, we shall see that such properties have only the solutions, lying on
the attractor ). Let us suppose also that their orthogonal projections P™u(t, ¢') and
P™o(t,¢”) on the subspace P™[, spanned on m first eigenfunctions of the Stokes
operator A (under the boundary condition (4,)) coincide for all te R!, i.e.

Pmu(t) = P™o(t,¢')—P™(t,¢") =0, VteR!. (36)
Then u(t) =0, VieR!, (37)
if only m is sufficiently large.

Phil. Trans. R. Soc. Lond. A (1994)
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Let us prove this fact. Due to (36) u(t) for any te R' belongs to the subspace Q™H,
which is orthogonal to P™H, and therefore

g () Z Agyy lu®)lI?,  VEeR?, (38)

where A,,,, is (m+ 1)th eigenvalue of —A (see [4], chapter II). Using (38) we deduce
from (32) the inequality

SO < = [(2= ) Ay —ex (O] WO . 39)
Its integration gives
Ju01? < Bl exp{ ~n@-a) dpesti=1)+ [ eso) ] (40
for any 7 < t. If we can find a natural number m such that for any ¢eR!
lim (t—T)_lJtc5(8) ds < vy(2—a) A, (41)

then from (40) will follow (37).
To satisfy (41) we use the information (7) on the solutions v'(t) and v”(¢). From (7)
follow the inequalities

3 IO+ 10" @) + (15O 1555, o+ 15O o) < vo* 1/12

and
f(llﬁ'(s ) 1552 o+ 187(9) 1533, 0) ds < v (18(T) 112+ 0"(7) 1)
+rytvitt—7) |1 fII2,;, —oo—>T<it<oo. (42)
Now we use (42) to find a majorant for the integral
jitn = [ lowignas

appearing in the left-hand side of (41) (see (33) determining c,(t)). Namely,
b(s)+9"(s) () +0"(s)

) 1/(1—e) 't

J(t’T)=Jj 2 2+2,4,Qd8 (J; 2 2424, Q
X (t =)@ DI < (0" () |2+ (|7 (7) 1) +vg vt (E—7) (| f1I2, 174
X (t—7) DI GAD Lyt ([0 (7) |12 [0 (7) [|2)2 A4 (8 — 1) @D/ EptD
+ et vt If 12200 (E—1)

and therefore

N

2+2u 2/(1+4p)
8)

t
lim (t—T)’IJ c5(8) ds < (1—a) (y3, Vo)V = (v vt || f112,)2 440, (43)

T-—>—00 T
We shall satisfy the condition (41) if we take m so large that
Amir > [(L=a) /ny(2— )] (v, vg ™)/ (v it [ f112,) Y040 (44)
Phil. Trans. R. Soc. Lond. A (1994)
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The smallest natural number m for which (37) follows from (36) is given the name
of the number of determining modes for a solution v’(¢) or for a bounded set composed
by ‘full trajectories’ of the problem (i.e. solutions of the problem determined for all
teRY).

The number m for which the inequality (44) is fulfilled is a majorant for any
bounded set in f, composed by full trajectories. Such maximal set is the minimal
global B-attractor 9 of the problem (1), (2), (4,).

6. Minimal global B-attractor

Here we consider the problem (1), (2), (4,) in a bounded domain £ < R* choosing
I as the phase space. _
Let us introduce one more space . It is the closure of J*(£2) in the norm
[l » = ”ﬁ'”2+2ﬂ,9- (45,)

This norm is equivalent on J*() to the norm

[l = ”72“2+2/4,Q+ ||uz||2.Q+ ||u||29, (45,)
since for any ueJ?(RQ)
||u||2,52 ||u ||2 @ ”u ||2 e=1/v/2 ||ﬁ,||29, (45,)
||u||2 o <L 4] 34, 0 (45,)
Note that
||uz||2+2,u eS¢ ||u||2+2,4 Q (46)

for any u belonging to W; +2,(€2) (see for example [18]). But for our purposes it is
sufficiently to know only (45,) and do not use (46).

The space S is a separable Banach space (see Appendix A) and therefore in #
there are coordinate (fundamental) systems {a'(z)}°,. Let us take one of them.
Without loss of generality we suppose that the system {a'(z)} is normalized in H,, i.e.
(a¥,al) = 8.

In [3] we required that {a'}{", form a basis in # but in reality we used only the
fact that {a'}{*, is a fundamental system in .

So, according to [3], the solution v(t, ¢) of the problem (1), (2), (4,), (4,) is found
as a limit of the Galerkin—Faedo approximations

et = 3 () ale), (47,)

1

~
I

which are determined by the following system of ordinary differential equations

f A x) + oy’ (x t)vip(x, t) al(x) + 3T (0™ (1)) aly ()] dae

=ffi(x)aé(x)dx, I=1,...,m, (47,
Q

with initial data
=(¢,at), I=1,...,m. (47,)

In (47,) ai(x), i = 1,2,3, are components of a'(x) and al,(x) = al, (x )+ ey, (). Tt is
easy to see that for solutions »™ of (47,), (47,) all a priori estimates which we have

proved in the preceding sections do hold. On the base of these estimates we can
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Attractors for the Navier—Stokes equations 183

conclude the unique solvability of the systems (47,), (47,) for all e R* and prove a
convergence of v™ to the solution v of the problem (1), (2), (4,), (4,). We shall not
describe here how it is done as the proofs are similar to the arguments of [3]. Let us
note only that now we have some additional estimates for »™ (the estimates of §3)
which give corresponding information about exact solutions of our problem and
which facilitate the limit procedure. In this way the theorem is proved:

Theorem 1. The problem (1), (2), (4,), (4,) in an arbitrary bounded domain Q < R®
with fe H_, and ¢ € H, has unique solution v(t, ) with the following properties:

UGC(R+’H0) n Lz((O>T)9H1) n L2+2/¢((077)’%) n Loo((ea 7')’%)
vteLoo((e’ T)?HO) n L2((6?T)’H1)

Sor arbitrary 0 < ¢ < 7 < 00. The solution operators (28) form the semi-group {V,, te R*,
H .} of the first class. It has a bounded B-absorbing set (14,) with B > R,,.

Let us recall that in the term ‘semi-group’ the property of continuity of V;: H,—
H, is included and the belonging of a semi-group to the first class means that
operators V,, t > 0, are compact. The continuity of V, for the problem (1), (2), (4,)
follows from (35) and the compactness of V;, ¢ > 0, follows from (26) and from the fact
that the balls of # are precompacts in H,,.

According to the theory of attractors for the semi-groups of the first class ([8-10])
we can deduce from the Theorem 1 and estimates (26), (27) the following

Theorem 2. The semi-group {V,, te R, H,} has the minimal global B-attractor M. It
is a compact connected invariant subset of H, bounded in H#

and

SUp{l1@llprae 0t < Po(llf1y)- (48)

peM

Attractor M is maximal among bounded invariant subsets of H,. Each solution v(t, @)
with ¢ €M can be extended as a solution v(t, p), te R, of the system (1), (2), (4,) for all
te(—o0,0) and

sup sup{llm(t, ¢>||,f o, ¢>n2d7} < By (If]). (49)

peM teR®
The number of determined modes on M does not exceed the number m for which holds
the inequality (44).
The approximations described in §6 are globally stable in the following sense:

Theorem 3. Let {a'}°, be a coordinate system in the space H# and v™(t), m = 1,2, ...,
be the Galerkin—Faedo approximations (47,) satisfying the system (47,), (47;). For any
natural m are determined the solution operators

Ve g—ov™(t, $), teR",

acting in the subspace HY = span {a,...,a™} of H,. The operators form the semi-group
{Vir, te R, Hy}. It has a minimal global B-attractor MM™. There are common majorants

sup sup {[llra. 0} < Do(I1-) (50)
meN" geMm™
t+1
and sup sup sup{uv:n(t,gb)n, f ||vx,<v,¢>||2dv} <oyl (51)
meN™ ¢peM™ teR t
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184 0. A. Ladyzhenskaya

For any ¢ > 0 there is a number m(e) €N such that
W™ < O(M)  for all m = m(e). (62)

Let us describe one of the possibilities to prove (52). Suppose that the statement
(52) is not true. Then there are an ¢ > 0 and a sequence i, €™+ with m; o0 when

k0o, such that dist {1, M} > ¢ for all {my,. (53)

Due to (48) and (50) the sum Uz_, IM™ U M = /is a bounded set in #” and therefore
is a precompact in H,. As M is a B-attractor we can find such 7'e R* that

Vp(K) = 0,5(M). (54)

After this we choose ¢,, €M™t in such a way that ¥, = V7, ). It is possible
because MM™ is invariant with respect to Vi*:. The sequence {¢m i belongs to
precompaet I and in virtue of this has a limit point ¢. Suppose for convenience that
all ¢,,,, k=1,2,...,converge to ¢ in H,. Let us consider the sequence {v,(t) =
Vire( ¢m },c Lon the segment te[0,77]. We have for it the uniform estimates of §§2 and
3. Because of these and of (47,) we can choose a subsequence {vk( ), t€[0, T} which
converges to the solution v(t, ) of the problem (1), (2) (45) for any t€[0,7] and
particularly for ¢ = 7. So we have proved that v (7) ¢mk j—00, converge to
(T, ¢). But this fact contradicts to (53) since v(7, $) €0, ,(M).

There are some other finite-dimensional approximations of the problem (1), (2),
(4,) which are globally stable. Among them there are difference-differential and
finite-difference approximations.

Appendix A

Let us explain why & is separable. For this purpose let us introduce the Banach
space X. Its elements are the maps U: Q — R*'. The components of U we partition in
three groups: to the first group come the elements u,, k = 1,2, 3, of L,(2, R"), to the
second group come the elements w,y,, 1,k =1,2,3, of Ly(2,R") and to the third
group, the elements w,,, 1,k = 1,2,3, of L2+2”(Q, R1). The norm of U in X is defined
as

1Ullx = 2 g lle, 0+ Z %30yl 2,0+ Z iy 242, -
k=1 i,k=1 i, k=1
This space is separable because each space L,, (2, R'), m > 1, is separable. Our space
H is a closed linear subset (i.e. subspace) of X and therefore H is also separable.

Appendix B. Some additional estimates

Let us prove that if fe H, and ¢ € # then the solution (¢, ¢) has the finite norm
llo(t, @)|l 4 for any t€ B*. We restrict ourselves to the case when € is bounded and f
does not depend on ¢. (The general case when f depends on ¢ and €2 is arbitrary can
be considered by the same method.) For such £ we can use the relations (45;).

Let us take the relation (15) and use it to get an inequality which is slightly
different from (17):

Hool+ g | #0@0)a

< Y 18 2y, @ @I Nz O N0, O oz O+ 11
< ¢ 191535, o o) 117 loge(B) 1=+ [1F11® (55)
Phil. Trans. R. Soc. Lond. A (1994)
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Attractors for the Navier—Stokes equations 185

with Ce = Vp(1/v/21Q|"*#)* max {Ro§ sup [|v(t) ll““} = Dy([v(0)])).
R

te

Now we multiply this inequality by 2, sum it with (19) multiplied by ¢ and majorize
the right-hand side of resulting inequality using Young’s inequality in the following
way:

df1 5 2|41 2
Ei?[ifgg(v (x,t)) dz+1t |[v,)| ]+§Ilvt(t)ll

+Vo(2—06) Elog @1 < 2¢6 [18(5) 11535, 1w (07

(€t 1oz (E) %) (et) ™/ + oy 18() 11355, (¢ o, (D)]1%)
2SI < goeet oz ()1 +3(2— ) (204)2 7 (et) ™/ [|6(8) | 35,745~
X [ ()20 E=2 o |80 134573 (¢ o011 +2 1 £11%. (56)

According to (3;)
o |87+ (/201 +m)] 1801535, 0+t [0, 1I?

< %J%((w Dde+tlo@lt =20 (57)

and therefore from (56) with ¢ = vya™(2—a) we can get

(6)/dt+3 oy (E)I” +3v0(2 — ) ¢ [|v, ()|

< Cq ol (2—a) ”ﬁ ||§Sr12+a)é(l—a) t ||v ” (1-2)/(2~a) = (1-a)/(2—a)
I
+e; 30138322 20) +2 |17 < gt 2n(t) + ¢y 272(t) + 2 || £, (58)

where
= (2-0) 27126 a2 =), ey = ¢ [ (2 4 ) 0N,
¢g = ¢ DTNy = [ ok (L—a) (1)) 2~ ) (L +p)
and
yo=1+(1—0)2+20)"

The concrete values of ¢, and vy, are not very important. It is important only that
the power —1/(2—a) is more than —1 for any x4 > . The powers vy, and 7y, do not
exceed the number 2. All this permits to derive from (58) the inequality

dzy(8)/dt < ey(t) 21(2), (59)
where 2(t) = 142(¢)
and Cro(t) = cgt™VE D oo+ 2| f12
The integration of (59) gives

2,(t) < 21(0)/1—24(0) ¢4 (¢), (60,)
where eaa(t) = a2 —a)(1 =) O L t(c, 2 £

This inequality holds for t€[0,7y) where 7, is a solution of the equation

" —1
en(rg) = 271(0) = [1 +%JQ @(¢(x))dx] ¢ =2(0). (60,)

Phil. Trans. R. Soc. Lond. A (1994)
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186 0. A. Ladyzhenskaya
Using (3,) it is not difficult to find a majorant @ for Tt
73" < P13+, 0)- (60,)

From the inequality (60,) follows for {€[0,7,) the estimate
2o 188, )P+ [v1/(2+2)] 152, P)IST3 o+ vt D)2
< ¢11((t“7¢)_1a ||¢||2+2/1,,Q)‘ (61)
The inequalities (60,) and (58) give the next estimate

f[||v1(7)||2+ vo(2—a) 7 [[og,(7)[*]dT < gzs12((t—"7'¢)_1a ”¢?“2+2/¢,9)a t5[0;7¢)~ (62)

The both estimates (61) and (62) are local in ¢. But they in a combination with the
estimations (26), (27) for ¢ > 37, give the non-local estimates

v IBOIE+ vy /(L + )] 15) 15550 o +E 10O < Pyg(t, [15(0) 1549, 0) (63,)
and

¢
J(||v,(7)||2+i)07||vx, )I%) Dyt ’A'(‘())::z-z,:,_r_))- (63,)
0

Appendix C. On non-homogeneous boundary condition
Let us take instead of (4;) the non-homogeneous boundary condition
() g = tlg, teR, (64)

and suppose that al,, can be continued on £ as a solenoidal field rot b(x), x€ Q, with
the following properties:

be W§+2ﬂ(g)> rotblyg = o g (65)

For such o we can prove a global unique solvability of the problem (1), (2), (64), (4,)
and the existence for it a compact minimal global B-attractor with a finite number
of detérmining modes.

For this purpose we introduce the functions:

u(x,t,e,p) = v(x, t)—al(x, e, p),

where a(x, €, p) = rot({(x, €, p) b(x)) and {(x, ¢, p) are very smooth scalar cut-functions
constructed in §4, ch. V [4] and depending on parameters: € (0, 1], p€(0, p,], p, <
1. The values of ¢ belong to [0,1] and { =1 near 02, so al,, = al,,. For any ¢, €
(0,1] we can choose the parameters ¢ and p such that the inequality

J e O Wi dx
Q

holds for any we H,. We take ¢, = v,/16 and fix (for all subsequent consideration) the
corresponding ¢ and p so that

< 6 lwg [® (66)

=2 20 a2, (67)

16

J wy, 0y W, da
Q

J o @ Wiz, | <
Q

where W = (wy,), Wy, = Wy, + Wy, and ay, = a;, +ay, , i,k =1,2,3. The norms |al,
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Attractors for the Navier—Stokes equations 187
lGll, llall 342, o do not exceed a constant ¢,,. The problem (1), (2), (64), (4,) for v, q is
equivalent to the following problem

3 3 a
W(t) + 2 (uy(t) + ) (e (t) + ) — X — T (di(0) + )
k=1 k=19%;
—4, () +fi, 1=1,2,3, (68))
divu =0, =0, ul,_,= ¢ a=y, (68,)
for u, g. System (68,) differs from system (1) by some low-order terms and external
forces. We shall show that problem (68,), £ = 1,2, has the same properties as problem

(1), (2), (4;), £ = 1,2. In particular it has a compact minimal global B-attractor in the
phase space H, if T}, have the form (3,).

Let us prove the existence of a bounded B-absorbing set for problem (68,), k = 1,
2. For this we multiply (68,) by u,;, take the sum over i = 1,2, 3, integrate over
re 2 and transform the result by an integration by parts using the equations (68,).
It gives the ‘energy’ relation

Ld u +1f T (6(2)) vy(t) doe
2J)o

=%f ﬂk(ﬁ(t))aikdx—Jg (U(8) + @) @y wy(8) de+ (f, u(t)).  (69)
Q

Using properties (i), (i) and (67) we derive from (69) the inequality

1O v 15O 1* + vy 180 1533, 2

<fc1<1+|v OISl e+, i)
Q

+2 | dll ||a||3,g||u||6,g+2 ||f||(-1> [zl (70)

Due to (16) with p = 6 and some elementary inequalities we get from (70) the following
inequalities:

d

;1O + v 6@ 1+ 1801533,

< 3c1f (500 + [6(O20)dl de -+ v, (1)
0

+V2yglldl llalls o 14l +v2 1 fll -y Il < ey 15 dll

+3c 1811533, olldll o4y, 0+ 570 1) 1P + €45 [14(2) |

) e 12
< v [6(0) P+ 9ckdmo ) 117+ 50 e 40 (1) 1313, o
1
+2+2 (3¢, 657)> % ||a||gigﬁ,9+il’o 4(t) |+ 2¢35 v5 !
1+2pu
= voer [BOI* 4515 e ™ 1013 0
+ 3, 1)1+ ¢14 (71)
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where

¢is = V2 lldl el o+ 11 1)
and

Y 1 _
Crq = C1q(€1,€5) = 9c3(4v,6,)7! ”“”2+2+2 (3¢, 651)* ||“||§1§z,9+26%3 vl

Let us choose €, = v, and ¢, such that [(1+2u)/(2+ 2u)] e2T20/A+20 = 1) Then from
(71) follows the inequality

d .

1O+ 50 IO+, 1601535, 0 < dvo AP + ¢4 (72)
It and inequality

18()1? = (1—e5) [14(0)]|*— (e5 — 1) | dl|*,  Veye(0,1),

with ¢, =1 give the estimate

d Y
AT () 11*+3vo 14(8) 12 +5vy 15(2) ”gigﬁ @S Oy (73)
where
15 = €030 |42

From (73) follows (see (10)—(14,)) that the balls B, (H,) with VR > Ry = 1/ (¢,5(voA,) )
are B-absorbing sets for problem (68,), k£ =1,2.
The inequality

t 't
f ||ﬁ<7>||2d7+év1f 18(r) 1230 dr < (0 + ter (74)
0 0

is a consequence of (73). It and

laO15%, 0 < (180 390, 0+ Nll a4z, )™ < 22211535 o+ 1411553 o)

give the estimate

t t
VOJ IIﬁ(T)II2d7+Vlf ld(m) 15330, 0 A7 < Pys(t, [u(0)1]). (75)
0 0

The estimations of more stronger norms of u(t) = u(t, @) (for T, of the form (3,)) are
derived as in §3. They have a local character and do not require in the special
continuation of af,, on £ described in the beginning of this section, if we know the
existence of a bounded B-absorbing set and estimate (73).

The proofs of a global unique solvability of problem (68,), £ = 1,2, and the
existence of a compact minimal global B-attractor for the problem are analogous to
the proofs of these facts for problem (1), (2), (4,), k=1,2.

Appendix D. On some more general case of 7(?d)

All results described above for the system (1) with 7}, (¢) having the form (3,) are
true for slightly more general 7, (4), namely for

T, (6) = 09(3) /ovy,, ik =1,2,3. (76)
Phil. Trans. R. Soc. Lond. A (1994)
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if 2(9) (the potential of 7'(4)) satisfies the following conditions:
(a) D: MY? > R belongs to W2 |, and 2(0) =0
(0) D(B) = vo |3+ v, [6]***, = 3, v4> 0, v, > 0;

) (TA2e): €= 5ttty > 1l = BB > 0, for any § and € from

09® Qv
M3)(3 . ’
s )
09 (% 39(5)\*
(d) fév) = [Zm( a@;(v)) ] < vy [9* 2 + v, for any de M3, where M3 is the set
ik

of all symmetric matrices 3 x 3.
The proofs of these results are fully analogous to the proofs given in §§2-6.

Remark. In all our considerations the stress tensor 7'(9) = (7},(9)) is symmetric:

le(ﬁ) = Tm(ﬁ)
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